

Sample Design, Weighting, and Variance Estimation for the new NHIS

J. Neil Russell, Ph.D.

Topics covered

- Sample design (1995 2004)
- Weighting
- Variance estimation

NHIS - Sample Design

Nationally representative sample of households

- Civilian non-institutionalized population
- Probability sample
- Multistage, stratified, cluster design

NHIS-Target Population

Excludes persons in:

- The military
- Long-term care facilities
- Prison

Eligible for interview:

- Group homes
- Apartment buildings
- Campuses

NHIS-Sample Features

Probability Sample - Each household has a known probability of selection

NHIS-Sample Features

Multistage

- Sample selection done in stages
- Each stage uses a different frame

Stratified

 Sampling units sorted by characteristics of interest

NHIS-Sample Features

Cluster

- Select groups of households near each other
- More efficient; less costly

Multistage Stratified Design (1)

Divide US into 1,995 Primary Sampling Units (PSUs)

- PSUs stratified by state
- PSUs stratified within State by MSA/non-MSA

Multistage Stratified Design (2)

1st stage – select 358 PSUs

- Largest 95 PSUs always selected (Self-Representing)
- Using PPS, 263 NSR PSUs selected (Nonself-Representing)
- Usually two PSUs per state

Multistage Stratified Design (3)

2nd stage -

- Within each PSU, stratify all blocks by race/ethnicity density
- Then, systematically select clusters of blocks (Secondary Sampling Units - SSU)

Multistage Stratified Design (4)

3rd stage -

- Within each block group (SSU), select clusters of 4-12 households
- Interviewers list all addresses

NHIS - Oversample

- Sample SSUs in areas with larger minority populations at higher rate
- Retain all households with Black or Hispanic member
- Retain only a portion of other households

Sample Design Summary

- Representative of US and 4 regions
- Household is the sampling unit
- Complex design
- Over-sample of Black and Hispanic households

Analytic issues: Intro

- Weights are needed
 - What are "weights"?
 - Why should they be used?
- Statistical procedures must take complex sample design into account
 - Why special procedures for variance estimation?

NHIS Weights

- "Weights" exist on data files as a variable
- A weight inflates each observation
- · Weights are unequal
- Weights are adjusted
- Sum of weights = national total

Weights: product of four components

- Probability of selection
- Non-response adjustment
- First-stage ratio adjustment
- Second-stage ratio adjustment (post-stratification)

Probability of selection

- Units multiplied by inverse of selection probabilities, based on:
 - -PSU
 - -Segment (SSU)
 - Household

Non-response adjustment

- Weight inflated to account for noninterview units
- Assumes responding households represent non-responding households

1st stage ratio adjustment

- Weight adjusted for non-self representing (NSR) PSUs based on:
 - MSA / non-MSA
 - Race / ethnicity
 - Hispanic
 - Non-Hispanic Black
 - Non-Hispanic Other
 - Region (NE, MW, S, W)

2nd stage ratio adjustment

- Weights adjusted to Census population control totals based on:
 - Age
 - Sex
 - Race / ethnicity
 - Hispanic
 - Non-Hispanic Black
 - Non-Hispanic Other

Why use weights?

- To produce national estimates
- To produce unbiased estimates

Weights, con't

- Failure to use weights -
 - Totals affected
 - Means and proportions distorted
 - -Certain estimators biased

1997: Percent Race/ethnicity

Race/ ethnicity	Unweighted	Weighted		
Hispanic	21.2	11.2		
NH White	60.8	72.2		
NH Black	14.2	12.2		
NH Other	3.9	4.3		

Source: 1997 NHIS

Which weight to use?

- Person level files
- Appropriate weight: WTFA
- Can be used on almost all variables

Variance estimation

- What is variance and standard error?
- How does sample design affect variance?
- Why use special procedures to calculate variance?

Variance

What is variance?

An "average" distance of all data points distributed around the mean. Or, a measure of the spread of the data.

var. =
$$\frac{\sum (X - X)^2}{n-1}$$

Variance

What is standard error?

Another measure of the spread of the data. It is also a "proxy" for sampling error.

stan. err. =
$$0^{1}$$
 var.

Variance

Why does variance matter?

t - statistic =
$$\frac{(\overline{X}_1 - \overline{X}_2)}{\overline{var}_1 + var}_2$$

Variance

Or, why does standard error matter?

Confidence interval (C.I.)

C.I. = $\overline{X} \pm 1.96$ (stan. err.)

T-test: M vs. F on Health Status

Stat.	SRS Unweighted		SRS Weighted		Complex Weighted	
	Male	Female	Male	Female	Male	Female
Mean	2.023	2.133	1.992	2.091	1.992	2.091
S.E. Mean	.00462	.00457	.00008	.00009	.0068	.0066
T-stat	-16.93		-775.96		-16.52	
d.f.	102,937		265,000,000		339	

Source: 1997 NHIS

NHIS Sample design

- Probability (known selection probability)
- Stratified (State and MSA / non-MSA)
- Multistage (PSU, SSU, blocks, housing unit)
- Cluster (households within same block)

Sample design and variance

- Impact of complex survey design (compared to a Simple Random Sample - SRS)
 - -Stratification decreases variance
 - Multiple stages increases variance
 - -Clustering increases variance

Sample design and variance

- Sample design affects variance computation
- A complex survey will produce larger variances than a SRS
- Need a different method of variance calculation if sample is other than SRS

Review: variance

- NHIS has a complex survey design
- Must use appropriate statistical procedures to account for complex sample design
- Variance estimation would be biased is sample design is ignored

Review: variance

- Most statistical software assume SRS
- Need computer software that can calculate variance under the assumptions of a complex survey design

Variance estimation, con't

- Computer software for variance estimation of complex surveys
 - Recommend SUDAAN
 - Other possibilities
 - EPI Info
 - STATA
 - SPSS add-on module
 - WestVar
 - SAS ver. 8.0